Standard form We tend to write very large or very small numbers with a "powers of ten" multiplier instead of umpteen zeros. So $1250=1.25\times10^3$ (where $10^3=10\times10\times10=1000$). The "3" means "move the decimal point 3 places to the right, so 1.25 become 1250, then lose the 10^3 multiplier". Similarly 0.019 becomes 1.9×10^{-2} (where $10^{-2}=0.01$), the -2 moves the decimal point 2 places to the left. The rule is that the first number ends up being between 1 and 10. Remember your powers of 10: | 10 ³ | 10^{2} | 10¹ | 10° | 10^{-1} | 10^{-2} | 10^{-3} | |-----------------|----------|-----|-----|-----------|-----------|-----------| | 1000 | 100 | 10 | 1 | 0.1 | 0.01 | 0.001 | e.g. for 1.9×10^{-2} we think $1.9 \times 0.01 = 0.019$ e.g. for 2.07×10^3 we think $2.07 \times 1000 = 2070$ Measurements with metric units are very easy to change into standard form e.g. 5 kg = 5×10^3 g $7 \text{ cm} = 7 \times 10^{-2} \text{ m}$ ## Note: A number in standard form should be written with the number part ≥ 1 but <10. For instance, 1.25×10^3 , 12.5×10^2 and 125×10^1 are all = 1250 but only the first gets you the marks for a "standard form" answer.