Linear sequences

"the interval between values is constant".

The n^{th} term formula looks like an+b where a and b are numbers, eq 2n+5.

The formula 2n+5 will produce a sequence 7, 9, 11, 13, 15,... (first 5 terms, n = 1, 2, 3, 4, 5).

Finding the formula

e.g. "Find the formula for the nth term for the segguenc 6, 11, 16, 21, 26...."

Position n	1	2	3	4	5			n
Value	6	11	16	21	26			3
	\	/\	/\	/\	/			
Increase:	\rightarrow	+5	+5	0	+5	+5		
				0) _		/	
					,	You must w	rite the	
				>	_	+5 +5 + to help yo		7
					~			

The "+5" increase tells us the formula for the nth term must be 5n + something

Now think how to get the first term 6 when n = 1.

 $6 = 5 \times 1 + 1$, we need to have the "something" = 1.

The final formula for the value of the nth term is 5n + 1

Examples

- (a) Sequence 1, 4, 7, 10, 13, the increase is +3 each time so we need 3n + something. To make the first term = 1, we think $1 = 3 \times 1 - 2$, the formula is 3n - 2
- (b) Sequence 5, 3, 1, -1, -3, the increase is -2 each time and the formula is -2n +7