Factorising quadratics

A quadratic expression is one containing a letter squared e.g.
$x^{2}+4 x+3$ or $3 y^{2}-2 y-1$
All quadratics can be written $a s x^{2}+b x+c$ where a, b, c are numbers ("coefficients").
Sometimes they have other letters, e.g. \mathbf{y}, \mathbf{z} etc instead of \mathbf{x}.

Equations containing x^{2} ("quadratic equations") can often be solved by factorising (unit 3). This is a key skill both for gcse and A-level, one of the things that is essential for an A-grade.

Simple quadratics $(a=1)$, just x^{2}, not $3 x^{2}$
"The opposite of multiplying two brackets"
We know $(x+3)(x+4)=x^{2}+4 x+3 x+12=x^{2}+7 x+12$.
How do we reverse the process to factorise $x^{2}+7 x+12$?
\rightarrow need ($x+$ number) $(x+$ another number $)$
\rightarrow think $(x+b)(x+a)=x^{2}+a x+b x+a b$

$$
=x^{2}+(a+b) x+a b
$$

To find the numbers for $x^{2}+7 x+12$, look for two numbers a, b that are factors of 12 and add to 7 .

Factors of 12: $1 \times 12, \quad 2 \times 6, \quad 3 \times 4$, also -1×-12 etc
Factors add to $1+12=13,2+6=8, \quad 3+4=7, \quad-1-12=-13$
Use the 3 and 4: $(x+3)(x+4) \quad \ldots$ order does not matter.
Now check it works! $(x+3)(x+4)=x^{2}+4 x+3 x+12=x^{2}+7 x+12$

The key skill here is finding number pairs:
Product 24, sum 10 ?
To make +24 , do we want "two positive factors" $1 \times 24,2 \times 12,3 \times 8,4 \times 6$
or "two negative" $-1 \times-24,-2 \times-12,-3 \times-8,-4 x-6$
$\rightarrow 4,6$ is the right pair since $4+6=10$.

Practice:

Product 32, sum $12(4,8)$
Product 15 , sum $16(1,15)$
Product 15 , sum $-16(-1,-15)$
Product 18, sum -11 (-2, -9)
Product -10 , sum $9(-1,10)$
Product -10, sum -3 $(-5,2)$

If the "c" term is positive, numbers have the same sign (++ or --):
Two positive numbers - multiply these out and check they work!
$x^{2}+7 x+10=(x+2)(x+5)$
$x^{2}+11 x+10=(x+1)(x+10)$
$x^{2}+31 x+30=(x+1)(x+30)$
$x^{2}+17 x+30=(x+2)(x+15)$
$x^{2}+13 x+30=(x+3)(x+10)$
$x^{2}+11 x+30=(x+5)(x+6)$
two negative:
$x^{2}-7 x+10=(x-2)(x-5)$
$x^{2}-11 x+10=(x-1)(x-10)$
$x^{2}-31 x+30=(x-1)(x-30)$

If " c " is negative, need + and -
$x^{2}+9 x-10=(x+10)(x-1)$
$x^{2}+3 x-10=(x+5)(x-2)$
$x^{2}-3 x-10=(x+2)(x-5)$
$x^{2}-9 x-10=(x+1)(x-10)$

Factorising the "difference of two squares"

$(x+a)(x-a)=x^{2}-a x+a x-a^{2}=x^{2}-a^{2}$

$$
\begin{gathered}
\left(\text { remember }(x+a)^{2}=(x+a)(x+a)=\right. \\
\text { and } \left.(x-a)^{2}=\ldots\right)
\end{gathered}
$$

We call anything like $x^{2}-a^{2} \quad a$ "difference of 2 squares",
$>$ Just write the factors as $(x+a)(x-a)$
e.g. $x^{2}-5^{2}=(x+5)(x-5)$

Alternatively, write it as $x^{2}+0 x-25$ and look for factors of -25 that add to 0 (need +5 and 5) hence $(x+5)(x-5)$.

Examples:
$x^{2}-1=(x+1)(x-1)$
$100-p^{2}=(10+p)(10-p)$
$11^{2}-9^{2}=(11+9)(11-9)=20 \times 2=40$
$(3 x)^{2}-(2 y)^{2}=(3 x+2 y)(3 x-2 y)$
$(x+2)^{2}-(y-5)^{2}=((x+2)+(y-5))((x+2)-(y-5))$

You may need to divide by a common factor first to get a square number form e.g.
$5 x^{2}-500=5\left(x^{2}-100\right)=5(x+10)(x-10)$
$2 x^{2}-8=2\left(x^{2}-4\right)=2(x+2)(x-2)$

Factorising expressions like $2 x^{2}+5 x+2$

Think of " $a x^{2}+b x+c$ "

Method:

1. Find $\mathrm{ac}=2 \times 2=4$
2. Find a pair of factors of ac that add to $b=5$, do I need $1 \times 4,2 \times 2,-1 \times-4,-2 \times-2$? $1 \times 4=a c=4$ and $1+4=5=b$
3. Because these are factors of ac not \mathbf{c}, we need to divide them by factors of a when putting them into the brackets. We do it like this:
Pick a pair of factors of $2 \mathrm{x}^{2}$ such as $2 \mathrm{x} \times 1 \mathrm{x}$, put them in the brackets:
$(2 x \quad)(1 x \quad)$
Pair the 2 and 1 with a fraction in the other bracket

Put the 1 and 4 into the brackets. Either way around will work - try to make integers.

$$
\left(2 x+\frac{1}{1}\right)\left(1 x+\frac{4}{2}\right)=(2 x+1)(x+2) \text {. Now check it! }
$$

Examples

$2 \mathrm{x}^{2}+3 \mathrm{x}+1, \mathrm{ac}=2=1 \times 2, \quad 2 x^{2}+3 x+1=\left(2 x+\frac{1}{1}\right)\left(1 x+\frac{2}{2}\right)=(2 x+1)(x+1)$
$3 x^{2}+7 \mathrm{x}+2, \mathrm{ac}=6=1 \times 6, \quad 3 x^{2}+7 x+2=\left(3 x+\frac{1}{1}\right)\left(1 x+\frac{6}{3}\right)=(3 x+1)(x+2)$
$6 x^{2}-13 x+6$, ac $=36=-4 x-9$, shall we say $6 x^{2}=1 x \times 6 x$ or $2 x \times 3 x$?
$6 x^{2}-13 x+6=\left(3 x-\frac{4}{2}\right)\left(2 x-\frac{9}{3}\right)=(3 x-2)(2 x-3)$
If you did $6 x^{2}-13 x+6=\left(6 x-\frac{4}{1}\right)\left(1 x-\frac{9}{6}\right)=(6 x-4)\left(x-\frac{3}{2}\right)$
you are not wrong but you need to finish by halving the first bracket and doubling the second to make integers:

$$
(6 x-4)\left(x-\frac{3}{2}\right)=(3 x-2)(2 x-3)
$$

Factorising 4 term expressions.

An alternative to putting fractions in the brackets is to split the 3 quadratic terms into 4 terms.

- The bx term splits in two, using the factors of ac
- Factorise the first pair, factorise the second pair
- Then combine the brackets

Examples:
(a) $2 x^{2}+3 x+1$, ac $=2=1 \times 2$

Hence we can write $2 x^{2}+3 x+1=2 x^{2}+1 x+2 x+1$

Factorise the pairs:

Combine them:

$$
=(x+1)(2 x+1)
$$

(b) $6 x^{2}-13 x+6, \quad$ ac $=36=-9 x-4$

Hence we can write $6 x^{2}-13 x+6=6 x^{2}-9 x-4 x+6$

Factorise the pairs: $\quad=3 x(2 x-3)-2(2 x-3)$ [n.b. not $+2(-2 x+3)$,
the two brackets must be identical]
Combine:

$$
=(3 x-2)(2 x-3)
$$

You may be asked to factorise a 4 term expression that is not a quadratic.

- Factorise pairs of terms, them combine, as above

Example:

$$
\begin{aligned}
& x y+4 x+3 y+12 \\
= & x(y+4)+3(y+4) \\
= & (x+3)(y+4)
\end{aligned}
$$

Proof of the fractions method (not needed for gcse!)
$\left(p x+\frac{r}{q}\right)\left(q x+\frac{s}{p}\right)=p q x^{2}+(r+s) x+\frac{r s}{p q}=a x^{2}+b x+c$
r, s are the two factors of $a c=p q\left(\frac{r s}{p q}\right)=r s$ that add to $r+s=b$ We also need $\mathrm{pq}=\mathrm{a}$.

